
A Fresh Perspective on Pilot-Abstractions

Shantenu Jha
http://radical.rutgers.edu

Workshop on HPC and Super-computing for
Future Science Applications

Brookhaven National Lab
05 June 2013

Outline
•  Introduction to Pilot-Jobs

–  A View from the HPC end of the spectrum
•  “If the forward problem is hard, the reverse problem is not easy”!!

•  Abstractions, Model and Implementation
–  Essence of Pilot Abstraction (Paradigm)
–  P*: A Model for Pilot

•  One possible model for Pilot Abstractions
–  BigJob: An implementation of P* Model

•  Example: Extensible and interoperability
•  Message: “Flexible” usage whilst meeting performance needs

•  Quo Vadis? Consilience?

Introduction to Pilot Jobs
•  Working definition: a system that generalizes a placeholder job to

provide multi-level scheduling to allow application-level control
over the system scheduler via a scheduling overlay

3

Resource A Resource B Resource C Resource D

User Application

S
ys

te
m

S

pa
ce

U
se

r
S

pa
ce

Resource Manager

Pilot-Job System
Policies Pilot-Job Pilot-Job

Introduction to Pilot-Jobs (2)
•  Working definitions:

–  A system that generalizes a placeholder job to provide multi-level
scheduling to allow application-level control over the system scheduler
via a scheduling overlay

–  “.. defined as an abstraction that generalizes the reoccurring concept of
utilizing a placeholder job as a container for a set of compute tasks; an
instance of that placeholder job is referred to as Pilot-Job or pilot.”

•  Advantages of Pilot-Job systems:
–  Avoid limitations of system-level only scheduling

•  Application Level Scheduling: Abstraction between application and
resource layer

–  Flexible Resource Management
•  Enable the “slicing and dicing” of resources

–  Move control and flexibility “upwards”
•  e.g., finer grained temporal control

4

Pilot-Jobs (PJ): Five Myths
•  PJs do not need well defined architecture, model and semantics, or PJs are

such a simple concept, it doesn't need more “attention”
–  Not to confuse “simple to use” with simple to design”

•  PJs are only about meta-scheduling (reducing queuing delays) on HTC, Or
PJs unfairly game HPC queuing

–  There are interesting usage modes beyond “cycle stealing”

•  PJ have to be tied to specific DCI; DCI are tied to specific PJ
–  Extensibility and interoperability have been difficult to establish

•  PJs are passive (system) tools, as opposed to user-space, active and
extensible components of a CI

–  PJs can be user-controlled “programmable elements

•  PJ do not help with next-generation “data-intensive” applications
–  PJ for NGS O(10-100) GB per task on existing DCI

Landscape of Pilot-Jobs
•  There are many Pilot-Job offerings, often semantically distinct

–  PanDA, DIANE, DIRAC, Condor Glide-In, SWIFT, ToPoS Falkon, BigJob…
•  Why do you think there has been a proliferation of PJs?

•  Conceptual & practical barriers to extensibility (& interoperability)
–  The landscape of PJ reflects, in addition to PJ specifics, the broader eco-

system of distributed middleware & infrastructure
–  Software Engineering issues, interfaces, standardization

•  Difference in the execution models of the PJs
–  We know “what” pilot-jobs do, but the “how” remains less clear

•  How to map tasks to pilot-jobs? How to choose/map optimal resource?
•  How to “slice and dice” resources?

•  Data remains a dependent variable, not a primary variable
–  Introduce the concept of Pilot-data

6

PilotJob Paradigm
Based upon analysis of Pilot-Job several implementations

Architecture: Three distinct logical elements:

•  Workload Manager: Responsible for making available the tasks to
the executor alongside the needed data and retrieving results

•  Task Executor: Responsible for executing the tasks while managing
their data.

•  Communication and Coordination (C-C): Patterns allow for and
regulate the interaction between (and within) these two components.

Execution Patterns: Based on multi-level scheduling and late-binding:
•  Multi-level scheduling. Tasks of a workload are scheduled on one

or more pilots and the pilots are then scheduled on a given resource

Capability/Functionality: A system that generalizes a placeholder job to
provide multi-level scheduling to allow application-level control over the
system scheduler via a scheduling overlay

P*: Theory and Practice of Pilot-Jobs

P*: A Conceptual Model for Pilot Abstractions
•  A Minimal but complete model

–  Minimal: Towards a common understanding of pilot-jobs
•  Provides vocabulary and model for analysis and insight

across different PJs
•  Does not try to provide closed form answers to all issues

–  Complete: Can be used to design a priori an effective Pilot-Job

•  Establish basic terminology, functionality and inter-relationship
–  What is the pilot? What is the agent? Push or pull?

•  Provide a framework for comparison across Pilot implementations
–  Many existing pilot implementations can be understood using P*
–  Not all pilot implementations must adhere strictly to P*

•  Unified view of Pilot-Abstractions
–  Provides symmetrical treatment for compute and data (and

eventually network)

P* Model: Elements, Characteristics and API

•  Elements:
–  Pilot-Compute (PC)
–  Pilot-Data (PD)
–  Compute Unit (CU)
–  Data Unit (DU)
–  Scheduling Unit (SU)
–  Pilot-Manager (PM)

•  Characteristics:
–  Coordination
–  Communication
–  Scheduling

•  Pilot-API

P* Elements

Pilot-Compute
•  The placeholder entity that gets submitted to a resource
•  Also, associated with the role of an agent:

–  collects information
–  manages the resources allocated
–  exchanges data

•  Executes application code
Pilot-Data
•  The placeholder entity that represents a storage resource

(reservation)
•  Can have the role of an agent:

–  collects information
–  manages the resources allocated

•  Physically stores the data

P* Elements

Compute Unit (CU)
•  Is defined by the application
•  Encapsulates a self-contained piece of work that is submitted

to the PJ system
•  E.g.:

–  task, job, rpc, web service call, etc.

Data Unit (DU)
•  Is defined by the application
•  Encapsulates a self-contained piece of logical data that is

submitted to the PJ framework
•  E.g.:

–  file, chunk, database, etc.

Pilot-API: Unified API to Pilot-Compute and
Pilot-Data

P*: Mapping and Interoperability

BigJob: A Reference Implementation
of the P* Model

BigJob: Implementation of the P* Model

BigJob Workload Management

BigJob: Resource Interoperability

SAGA: Interoperability Layer for BigJob

http://saga-project.org

SAGA: Standard for Distributed Applications

SAGA: Interoperability layer upon which other
tools and applications are built

•  HOW SAGA is Used?
–  Uniform Access-layer to DCI

•  EGI, XSEDE, DATAONE, UK NGS and NAREGI/RENEKI
and Clouds

–  Application “Scripting Layer” to DCI
–  Build tools, middleware services and capabilities that use DCI

•  e.g. Gateways, Pilot-Jobs
•  WHAT is SAGA Used for?

–  Support production-grade science and engineering
–  Research tool to design, implement reason about distributed

programming models, systems and applications

BigJob: An Extensible, Interoperable
Pilot-Job for HPC and HTC Workloads

BigJob: (Partial) Usage on XSEDE Machines

> 10M SUs/year (and increasing) on XSEDE machines

 The Challenge of Integrating Compute and Data at Scale

Accessing Multiple DCI & Pilot-Jobs via Pilot-API

128 BFAST tasks, O(10) GB

“Coarse-Grained” BigJob Performance

•  Number of tasks that BJ can dispatch per second:
–  Distributed: O(10)
–  Locally: > O(10)

•  Number of Pilots (Pilot-Agents) that can be marshaled
–  Locally/Distributed: O(100)

•  Number of tasks concurrently managed:
–  Number of Pilot-Agents x Per each agent = O(100) x O(1000)

•  Typical number of sub-jobs per Pilot-Agent:
–  Locally/distributed: O(1000)

•  Obviously the above depend upon data per task:
 Range of data: O(1)--O(109) Bytes

•  Duration of each task: O(1) second to O(105) seconds

BigJob Exemplar: Varying the “coupling”
between many MD Simulations on Many
Supercomputers

Uncoupled and Loosely Coupled Parallel
Molecular Simulations
•  Enhanced Sampling of Uncoupled Ensembles

–  Large Ensembles of HPC simulations, Multi-stage/chaining of
HPC simulations

•  Loosely Coupled: Understand protein-ligand recognition via
(multidimensional) replica-exchange

•  Requirements:
–  Launch and monitor/manage (order 102-104) ensemble members

•  Where each ensemble member could be 128-1024 cores

–  Varying degrees of coupling between ensemble members
–  Varying job duration: hours to days to weeks
–  Ad hoc pair wise (a)synchronous data exchange

•  No global synchronization, No a priori determined exchange
partners

HP-HTC or HT-HPC?

Number of cores per Ensemble Member

of Ensemble Members

HT-HPC on Kraken
126 ensembles, each of 192 cores = 24192 cores

Replica-Exchange Performance in AMBER

Umbrella sampling of the backbone conformational space of alanine
dipeptide. The exchange parameters are all permutations of harmonic
biasing potentials on each torsion.

QM/MM Replica-Exchange

•  QM/MM is not generally considered parallelizable
•  RE provides efficient sampling irrespective

•  Repex FW: BigJob-based Repex
•  Framework to handle O(100)--- O(1000) concurrent simulations
•  Amongst the earliest QM/MM
•  Framework similar to classical QM/MM

•  Performance increases linearly with core count and number of QM/
MM simulations

•  No apparent coordination cost for additional simulations

http://aimes-project.org

DoE-ASCR (DE-FG02-12ER26115)
Collaboration between Rutgers (lead), Chicago and UM

DoE AIMES: Abstractions and Integrated
Middleware for Extreme Scale

Overview
•  The Assumption:

–  Distributed computing is one pathway to extreme-scale and a necessity for
collaboration

•  The Problem
–  Current state of distributed applications and infrastructure is problematic
–  Two situations predominate:

•  Applications are inflexible: optimized and pinned to a specific platform
•  Applications are flexible: run anywhere but performance is unpredictable

•  The Hypothesis
–  Flexibility and performance are compatible!
–  Extracting Simplicity whilst managing Complexity requires abstractions

•  Abstractions and Models are key to “reason about distribution”

•  The Solution
–  We advance abstractions that will facilitate reasoning integrated across

application and resource level
•  AIMES: Integrated approaches to Resource Management

38

Conclusion
•  “Pilot Abstraction Works!”

–  Different application types, execution models and requirements
–  Execution on traditional (HPC/HTC) and emerging platforms

•  Towards “general purpose” pilots? Extensibility and Interoperability
will need to be first order concerns
•  Pilot Abstraction P* Model BigJob
•  Commonality across Pilot Implementations ?

–  Seek convergence and coordination, not domination!
–  Best practices? Common APIs/Interfaces? Standardization?

•  Extreme Scale Science requires abstractions and models
•  Using abstraction and models, even (pilot) prototypes can deliver

flexible usage yet meet performance requirements
•  AIMES: Abstractions as basis for “Integrated” middleware

References
•  ``P*: A Model of Pilot-Abstractions”, 8th IEEE International

Conference on e-Science 2012 (DOI: 10.1109/eScience.
2012.6404423)

•  “Distributed Computing Practice for Large-Scale Science
& Engineering Applications” Shantenu Jha, Daniel S. Katz,
Jon Weissman et al, Computing and Concurrency: Practice
and Experience, 2012 (DOI: 10.1002/cpe.2897)

•  “Pilot-Data: An Abstraction for Distributed Data”,
arXiv:1301.6228

•  “A Fresh Perspective on Pilot-Jobs”, Review/Survey Article
on Pilot-Jobs, to be submitted (2013)

References

•  SAGA-Python:
–  http://saga-project.github.io/saga-python/

•  BigJob: An implementation of P*
–  http://github.com/saga-project/BigJob/wiki

•  RADICAL:
–  http://radical.rutgers.edu/

•  Publications:
–  http://radical.rutgers/edu/publications

Acknowledgements
Graduate Students:
•  Ashley Zebrowski
•  Melissa Romanus
•  Mark Santcroos
•  Anton Trekalis
Undergraduate Students:
•  Vishal Shah
Research Scientist/Programmer:
•  Andre Luckow
•  Andre Merzky
•  Matteo Turilli
•  Ole Weidner

